
Dominik Pataky

Faculty of Computer Science, Institute of Systems Architecture, Chair of Computer Networks

SecShift: Analysis and Conception of Traffic

Security for the OpenShift Platform
Diplomarbeit // Dresden, 4th July, 2019

Context

• So far: companies use in-house hardware according to their needs

• Problem: increased need for temporary computing resources

• Solution: the ’Cloud’, on demand usage of centralised resources

• Problem: security, separation of tenants in shared environments

• Solution: virtualisation and containerisation

• Problem: data is routed through foreign infrastructure

• Solution: network traffic security

• Problem: cool, but how?

• Solution: SecShift!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

2/24

Context

• So far: companies use in-house hardware according to their needs

• Problem: increased need for temporary computing resources

• Solution: the ’Cloud’, on demand usage of centralised resources

• Problem: security, separation of tenants in shared environments

• Solution: virtualisation and containerisation

• Problem: data is routed through foreign infrastructure

• Solution: network traffic security

• Problem: cool, but how?

• Solution: SecShift!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

2/24

Context

• So far: companies use in-house hardware according to their needs

• Problem: increased need for temporary computing resources

• Solution: the ’Cloud’, on demand usage of centralised resources

• Problem: security, separation of tenants in shared environments

• Solution: virtualisation and containerisation

• Problem: data is routed through foreign infrastructure

• Solution: network traffic security

• Problem: cool, but how?

• Solution: SecShift!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

2/24

Context

• So far: companies use in-house hardware according to their needs

• Problem: increased need for temporary computing resources

• Solution: the ’Cloud’, on demand usage of centralised resources

• Problem: security, separation of tenants in shared environments

• Solution: virtualisation and containerisation

• Problem: data is routed through foreign infrastructure

• Solution: network traffic security

• Problem: cool, but how?

• Solution: SecShift!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

2/24

Context

• So far: companies use in-house hardware according to their needs

• Problem: increased need for temporary computing resources

• Solution: the ’Cloud’, on demand usage of centralised resources

• Problem: security, separation of tenants in shared environments

• Solution: virtualisation and containerisation

• Problem: data is routed through foreign infrastructure

• Solution: network traffic security

• Problem: cool, but how?

• Solution: SecShift!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

2/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

3/24

But first.. OpenShift!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

4/24

Look into the OpenShift cloud platform

Linux kernel

namespaces

cgroups

seccomp

SELinux

Reproducible
images, registry

Automated
networking

CLI / REST API

Cluster
orchestration

(Nodes, Master)

Services
(proxy, load-
balancers)

Shared platform:
User and Projects

CI/CD pipelines

Overlay
networking

Grouping
containers: Pods

Authenticated
REST API / UI

OpenShift

Kubernetes

Docker

capabilities

Figure 1: Overview over components in OpenShift

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

5/24

Essential components of OpenShift

Let’s be a user and deploy a web and database app combination!

1. We define two container images (isolated applications)

2. OpenShift creates two pods in our Project

3. TheMaster schedules the Pods on Nodes (Linux machines).

4. Connection through service layer (load-balancing, virtual IPs)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

6/24

Essential components of OpenShift

Let’s be a user and deploy a web and database app combination!

1. We define two container images (isolated applications)

2. OpenShift creates two pods in our Project

3. TheMaster schedules the Pods on Nodes (Linux machines).

4. Connection through service layer (load-balancing, virtual IPs)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

6/24

Essential components of OpenShift

Let’s be a user and deploy a web and database app combination!

1. We define two container images (isolated applications)

2. OpenShift creates two pods in our Project

3. TheMaster schedules the Pods on Nodes (Linux machines).

4. Connection through service layer (load-balancing, virtual IPs)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

6/24

Essential components of OpenShift

Let’s be a user and deploy a web and database app combination!

1. We define two container images (isolated applications)

2. OpenShift creates two pods in our Project

3. TheMaster schedules the Pods on Nodes (Linux machines).

4. Connection through service layer (load-balancing, virtual IPs)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

6/24

Essential components of OpenShift

Let’s be a user and deploy a web and database app combination!

1. We define two container images (isolated applications)

2. OpenShift creates two pods in our Project

3. TheMaster schedules the Pods on Nodes (Linux machines).

4. Connection through service layer (load-balancing, virtual IPs)

Upcoming task: secure connection between webserver and database!

OpenShift networking OpenShift security

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

6/24

Problem domain model

1. Base: OpenShift topology

2. Set preconditions to limit scope

3. Definition of entities (components

and interconnections), traffic flows

and adversary models

4. Refinement of scope: focus on

traffic security

5. Threat modelling in new scope

Problem domain model

1. Base: OpenShift topology

2. Set preconditions to limit scope

3. Definition of entities (components

and interconnections), traffic flows

and adversary models

4. Refinement of scope: focus on

traffic security

5. Threat modelling in new scope

Problem domain model

1. Base: OpenShift topology

2. Set preconditions to limit scope

3. Definition of entities (components

and interconnections), traffic flows

and adversary models

4. Refinement of scope: focus on

traffic security

5. Threat modelling in new scope
Firewall

Node

Uplink

Overlay network
Pod Service Pod

Master

Master-to-Node

Key-Value,
Secrets

External public access

Internal service
connection

Service proxy,
load balancer

Pod-to-Service

Storage

Pod-to-Storage

Figure 2: Problem domain topology

Problem domain model

1. Base: OpenShift topology

2. Set preconditions to limit scope

3. Definition of entities (components

and interconnections), traffic flows

and adversary models

4. Refinement of scope: focus on

traffic security

5. Threat modelling in new scope
Firewall

Node

Uplink

Overlay network
Pod Service Pod

Master

Master-to-Node

Key-Value,
Secrets

External public access

Internal service
connection

Service proxy,
load balancer

Pod-to-Service

Storage

Pod-to-Storage

Figure 2: Problem domain topology

Problem domain model

1. Base: OpenShift topology

2. Set preconditions to limit scope

3. Definition of entities (components

and interconnections), traffic flows

and adversary models

4. Refinement of scope: focus on

traffic security

5. Threat modelling in new scope

Traffic flows and adversaries

Firewall

Node

Uplink

Overlay network
Pod Service Pod

Master

Master-to-Node

Key-Value,
Secrets

External public access

Internal service
connection

Service proxy,
load balancer

Pod-to-Service

Storage

Pod-to-Storage

Figure 2: Problem domain topology

Threats and requirements analysis

1. STRIDE: threat modelling

Amount of threats→ ranking��⊗

2. Security requirements for traffic

security and key management

based on STRIDE, 2 ∗ 6 = 12 goals

Threat Protection goal

Spoofing Authenticity

Tampering Integrity

Repudiability Non-repudiability

Info disclosure Confidentiality

Denial of Service Availability

Elevation of privilege Authorisation

3. SQuaRE: ‘Systems and software

Quality Requirements and

Evaluation’ (ISO standard)

10 characteristics

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

8/24

Threats and requirements analysis

1. STRIDE: threat modelling

Amount of threats→ ranking��⊗

2. Security requirements for traffic

security and key management

based on STRIDE, 2 ∗ 6 = 12 goals

Threat Protection goal

Spoofing Authenticity

Tampering Integrity

Repudiability Non-repudiability

Info disclosure Confidentiality

Denial of Service Availability

Elevation of privilege Authorisation

3. SQuaRE: ‘Systems and software

Quality Requirements and

Evaluation’ (ISO standard)

10 characteristics

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

8/24

Threats and requirements analysis

1. STRIDE: threat modelling

Amount of threats→ ranking��⊗

2. Security requirements for traffic

security and key management

based on STRIDE, 2 ∗ 6 = 12 goals

Threat Protection goal

Spoofing Authenticity

Tampering Integrity

Repudiability Non-repudiability

Info disclosure Confidentiality

Denial of Service Availability

Elevation of privilege Authorisation

3. SQuaRE: ‘Systems and software

Quality Requirements and

Evaluation’ (ISO standard)

10 characteristics

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

8/24

Threats and requirements analysis

1. STRIDE: threat modelling

Amount of threats→ ranking��⊗

2. Security requirements for traffic

security and key management

based on STRIDE, 2 ∗ 6 = 12 goals

Threat Protection goal

Spoofing Authenticity

Tampering Integrity

Repudiability Non-repudiability

Info disclosure Confidentiality

Denial of Service Availability

Elevation of privilege Authorisation

3. SQuaRE: ‘Systems and software

Quality Requirements and

Evaluation’ (ISO standard)

10 characteristics

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

8/24

Now we know what must be covered.

What are existing threats?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

9/24

Firewall

Node

Uplink

Overlay network
Pod Service Pod

Master

Master-to-Node

Key-Value,
Secrets

External public access

Internal service
connection

Service proxy,
load balancer

Pod-to-Service

R3

R2

R1

W-1

W-2

W-3

W-4

W-5

W-8

W-6

W-7

W-9

Figure 3: OpenShift topology with weak points (weaknesses W-1 to W-9) and responsibility groups R1-R3

Threat analysis for entities

RG ID Description STRIDE

R1

W-1 The firewall, security layer dividing security zones. STRIDE⊗
W-2 The uplink, connecting data centers to the public internet. STRID-⊗
W-3 Traffic flowing through the external public access. -T-ID-�
W-4 Traffic forwarded by the Service Proxy onto the internal

Service connection.

-TRID-�

R2

W-5 Pod-to-Service (P2S) connections from Pods to virtual IPs. STRIDE⊗
W-6 Connections routed via the overlay network (ON). STRIDE⊗
W-7 Pod-to-Pod (P2P) traffic on the same Node. -T-IDE�

R3
W-8 The bidirectional Master-to-Node (M2N) connections. S--IDE�
W-9 Access to the Secrets database (SDB). ST-ID-�

Table 1: Weaknesses of components and interconnections in network related contexts. Rn references the
responsibility group. W-n reference the identifiers in fig. 3. Symbols are ranked as low (�), mid (�) and high
(⊗) criticality according to their STRIDE vulnerability.

Threat analysis for entities

RG ID Description STRIDE

R1

W-1 The firewall, security layer dividing security zones. STRIDE⊗
W-2 The uplink, connecting data centers to the public internet. STRID-⊗
W-3 Traffic flowing through the external public access. -T-ID-�
W-4 Traffic forwarded by the Service Proxy onto the internal

Service connection.

-TRID-�

R2

W-5 Pod-to-Service (P2S) connections from Pods to virtual IPs. STRIDE⊗
W-6 Connections routed via the overlay network (ON). STRIDE⊗
W-7 Pod-to-Pod (P2P) traffic on the same Node. -T-IDE�

R3
W-8 The bidirectional Master-to-Node (M2N) connections. S--IDE�
W-9 Access to the Secrets database (SDB). ST-ID-�

Table 1: Weaknesses of components and interconnections in network related contexts. Rn references the
responsibility group. W-n reference the identifiers in fig. 3. Symbols are ranked as low (�), mid (�) and high
(⊗) criticality according to their STRIDE vulnerability.

Short break – we now know..

X How OpenShift works

X The problem domain for SecShift

XWhich threats exist, with focus on Pod-to-Pod traffic security

X Goals beyond threat mitigation

Next: existing work and technology, followed by SecShift’s design

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

12/24

What exists?

• Predecessor ‘Tencrypt: hardening OpenShift by encrypting tenant traffic’

• Research: tcpcrypt, multi-tenancy in the cloud, performance analysis of VPN

software, security examinations, Zero Trust networking

• Technology: Kubernetes extensions Istio Envoy proxies, Wormhole and

Cilium encryption layer, VPN software, secrets management

• Related: memory protection (secure enclaves), improved isolation of

applications with Kata Containers and Firecracker, layer 2 encryption with

MACsec (IEEE standard)

• SecShift: integrated encryption overlay for each tenant, no application

adaptation through transparent routing, utilising namespaces, distributed

architecture

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

13/24

What exists?

• Predecessor ‘Tencrypt: hardening OpenShift by encrypting tenant traffic’

• Research: tcpcrypt, multi-tenancy in the cloud, performance analysis of VPN

software, security examinations, Zero Trust networking

• Technology: Kubernetes extensions Istio Envoy proxies, Wormhole and

Cilium encryption layer, VPN software, secrets management

• Related: memory protection (secure enclaves), improved isolation of

applications with Kata Containers and Firecracker, layer 2 encryption with

MACsec (IEEE standard)

• SecShift: integrated encryption overlay for each tenant, no application

adaptation through transparent routing, utilising namespaces, distributed

architecture

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

13/24

What exists?

• Predecessor ‘Tencrypt: hardening OpenShift by encrypting tenant traffic’

• Research: tcpcrypt, multi-tenancy in the cloud, performance analysis of VPN

software, security examinations, Zero Trust networking

• Technology: Kubernetes extensions Istio Envoy proxies, Wormhole and

Cilium encryption layer, VPN software, secrets management

• Related: memory protection (secure enclaves), improved isolation of

applications with Kata Containers and Firecracker, layer 2 encryption with

MACsec (IEEE standard)

• SecShift: integrated encryption overlay for each tenant, no application

adaptation through transparent routing, utilising namespaces, distributed

architecture

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

13/24

What exists?

• Predecessor ‘Tencrypt: hardening OpenShift by encrypting tenant traffic’

• Research: tcpcrypt, multi-tenancy in the cloud, performance analysis of VPN

software, security examinations, Zero Trust networking

• Technology: Kubernetes extensions Istio Envoy proxies, Wormhole and

Cilium encryption layer, VPN software, secrets management

• Related: memory protection (secure enclaves), improved isolation of

applications with Kata Containers and Firecracker, layer 2 encryption with

MACsec (IEEE standard)

• SecShift: integrated encryption overlay for each tenant, no application

adaptation through transparent routing, utilising namespaces, distributed

architecture

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

13/24

What exists?

• Predecessor ‘Tencrypt: hardening OpenShift by encrypting tenant traffic’

• Research: tcpcrypt, multi-tenancy in the cloud, performance analysis of VPN

software, security examinations, Zero Trust networking

• Technology: Kubernetes extensions Istio Envoy proxies, Wormhole and

Cilium encryption layer, VPN software, secrets management

• Related: memory protection (secure enclaves), improved isolation of

applications with Kata Containers and Firecracker, layer 2 encryption with

MACsec (IEEE standard)

• SecShift: integrated encryption overlay for each tenant, no application

adaptation through transparent routing, utilising namespaces, distributed

architecture

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

13/24

SecShift design overview

• Multiple aspects (key type, peering, updates, . . .) taken into account

• Each design aspect has multiple possible approaches

• Two topology variations: hybrid and fully distributed

• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

14/24

SecShift design overview

• Multiple aspects (key type, peering, updates, . . .) taken into account

• Each design aspect has multiple possible approaches

• Two topology variations: hybrid and fully distributed

• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

14/24

SecShift design overview

• Multiple aspects (key type, peering, updates, . . .) taken into account

• Each design aspect has multiple possible approaches

• Two topology variations: hybrid and fully distributed

• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

14/24

SecShift design overview

• Multiple aspects (key type, peering, updates, . . .) taken into account

• Each design aspect has multiple possible approaches

• Two topology variations: hybrid and fully distributed

• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

14/24

SecShift design overview

• Multiple aspects (key type, peering, updates, . . .) taken into account

• Each design aspect has multiple possible approaches

• Two topology variations: hybrid and fully distributed

• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

14/24

SecShift design overview

• Multiple aspects (key type, peering, updates, . . .) taken into account

• Each design aspect has multiple possible approaches

• Two topology variations: hybrid and fully distributed

• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)

Next: a look at the topology!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

14/24

SecShift hybrid design

Node Node

events

STNd

inter-STNd

secrets

STNd

Secrets API
Pods/

Services
watch API

Docker Docker

Pod

SPd

Pod

SPd

Pod

SPd

Pod

SPd

Pod

SPd

encrypted P2P mesh tunnels

STNd

Pod

SPd

Project

Figure 4: SecShift hybrid design topology

Distributed topology with SMd Daemons and their tasks Design variations and choices

Evaluation!

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

16/24

Demo with functionality evaluation

The demo shows SecShift in action. At first the setup with Ansible is shown.

Then, the vanilla OpenShift setup is used to demonstrate the ability for hosts to

capture clear text traffic on the overlay network interface. Running SecShift and

applying the encryption overlay then illustrates the changes: all Project-internal

packets are routed transparently through tunnels in the meshed Pod-to-Pod

network. Listening on the node’s interfaces (VXLAN) visualises the encrypted

packet stream.

Reference implementation

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

17/24

It works, but is it viable?

A look at the performance. . .

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

18/24

Throughput for TCP in unsecured setup

Figure 5: iperf with unsecured cross-Node connections, TCP, no bandwidth limit

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

19/24

Throughput in secured setup with TCP

Figure 6: iperf with secure cross-Node tunnels, TCP, no bandwidth limit, no peer updates

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

20/24

It provides fair bandwidth!

Does it also meet the requirements?

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

21/24

Reviewing the requirements

• Weaknesses and STRIDE

– Pod-to-Service (W-5): entirely bypassed⊗→�
– Overlay network (W-6): key pairs, peer configuration and VPN features⊗→�
– Pod-to-Pod on same Node (W-7): encryption in namespace�→�

• Security requirements: 10 of 12.

• SQuaRE characteristics: 8 of 10.

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

22/24

Reviewing the requirements

• Weaknesses and STRIDE

– Pod-to-Service (W-5): entirely bypassed⊗→�
– Overlay network (W-6): key pairs, peer configuration and VPN features⊗→�
– Pod-to-Pod on same Node (W-7): encryption in namespace�→�

• Security requirements: 10 of 12.

• SQuaRE characteristics: 8 of 10.

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

22/24

Reviewing the requirements

• Weaknesses and STRIDE

– Pod-to-Service (W-5): entirely bypassed⊗→�
– Overlay network (W-6): key pairs, peer configuration and VPN features⊗→�
– Pod-to-Pod on same Node (W-7): encryption in namespace�→�

• Security requirements: 10 of 12.

• SQuaRE characteristics: 8 of 10.

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

22/24

Conclusion

• Original goal: transparent encryption of Pod-to-Pod traffic in Project

• SecShift passed seven steps, from technology examination up to evaluation

• Result: reference implementation, evaluation and review prove design as a

feasible and valuable security improvementX

• Future work: hardening of daemons, SMd-based distributed setup,

hardware-based memory protection

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

23/24

Conclusion

• Original goal: transparent encryption of Pod-to-Pod traffic in Project

• SecShift passed seven steps, from technology examination up to evaluation

• Result: reference implementation, evaluation and review prove design as a

feasible and valuable security improvementX

• Future work: hardening of daemons, SMd-based distributed setup,

hardware-based memory protection

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

23/24

Conclusion

• Original goal: transparent encryption of Pod-to-Pod traffic in Project

• SecShift passed seven steps, from technology examination up to evaluation

• Result: reference implementation, evaluation and review prove design as a

feasible and valuable security improvementX

• Future work: hardening of daemons, SMd-based distributed setup,

hardware-based memory protection

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

23/24

Conclusion

• Original goal: transparent encryption of Pod-to-Pod traffic in Project

• SecShift passed seven steps, from technology examination up to evaluation

• Result: reference implementation, evaluation and review prove design as a

feasible and valuable security improvementX

• Future work: hardening of daemons, SMd-based distributed setup,

hardware-based memory protection

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

23/24

These slides and the associated thesis with further references will be published on my

website https://dpataky.eu and are licensed as CC BY-SA 4.0

That’s it.Thanks!
Questions? Feedback?

Improvements?

And don’t forget: there is no Cloud – there’s just somebody else’s computer.

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

24/24

https://dpataky.eu

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

25/24

OpenShift networking with overlay

VXLAN
overlay
network

Node

Pod

Container

Node

vxlan0

vxlan0
br0

eth0 | veth

eth0 | veth

tun0

Public
Internet

egress
NAT

Figure 7: OpenShift networking

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

26/24

Security in OpenShift

• Kubernetes Namespaces (Projects)

• User management provides authentication (tokens) and authorisation (RBAC)

• API enforces TLS and offers Secrets storage

• Linux namespaces, SELinux, cgroups

• Security context constraints (SCCs) for Pods

• Extensions deliver more possibilities (Envoy proxies)

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

27/24

Traffic flows and adversaries

• Three traffic flows: on the same Node (TF1), through routers in the same data

centre (TF2) and across DCs via the uplink (TF3)

• Four adversaries: passive attacker listening on routers (AM1), active attacker

modifying routing configurations (AM2), misconfigurations in log collections

(AM3) and attackers accessing Secret data (AM4)

• Identifying weaknesses in components and interconnections based on

gathered attack surfaces

Domain model

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

28/24

Extended topology for true distribution

NodeNode

STNd events STNd

Pod Pod Pod Pod PodPods/
Services

watch API

inter-STNd

Docker Docker

SPdSPdSPd SPdSPd

STNd STNd

SecShift
Multiplexer

daemon

SecShift
Multiplexer

daemon

encrypted P2P mesh tunnels
Project

Figure 8: SecShift distributed design topology with SMd (and no usage of Secret or APIs)

Daemons and their tasks

Legend

Keys

symmetric
shared key

asymmetric
key pairs

Peering

Pods' pubkeys stored in
central instance

decentralised mesh, no
data in OpenShift API

hybrid distributed mesh
with central broker

Daemon

one instance
per Node

one instance per
Node per Tenant

one instance
per Pod

Topology
updates

Secret object in
API as broker

SMd as broker

Daemon on Master
as broker

Pod config

OpenShift
Pod + Service APIs

Docker daemon,
distributed to peers

Docker / CNI

nsenter / namespace
with ip utils

Chosen
approach

Alternative
approach

Topic

Services

Extra keys shared
in Service Pods

Bypassing virtual IPs
in the same Project

Deployment

Securely isolated
application

System service

Kubernetes
DaemonSet

Figure 9: Design alternatives and choices Design topology

Daemon tasks

Daemon Tasks

STNd

Mesh with STNd peers: channels for heartbeat and exchange

Local Pods: list of local Pods and their public keys

Remote Pods: with public keys, received from peers

Topology: updates in the Project topology (from API, Pods/Services)

Secret: updates from other STNd peers

Docker: container details, events on the local Node

SPd

Coupling: channel to STNd, listening for commands

Key: creation and updates, sending public key to STNd

Network: network configuration (routes, NAT)

DNS: proxy DNS to connect Pods directly instead of Service IPs

(SMd)
Multiplexer: route packets from STNds to remote peers

Static connection: keeps one long-living channel to each Node

Table 2: List of tasks for all daemons, including the SMd

Design topology

STNd peer announcement

Node

Node

Node

publishes
port and keySTNd listeners receive

updateSecret

secure tunnel STNd

secure tunnel STNd

boot
1

2
3

4

Figure 10: Daemons announce themselves to their peers

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

32/24

Reference implementation

• OpenShift test cluster with master and four nodes

• All nodes in WireGuard mesh network

• Daemons in Go, encryption interface with WireGuard

• Transparent routing: namespace-local network policies, routing tables,

iptables rules

• Bypassing of Service IPs by proxying DNS and modifying answers

Demo

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

33/24

Node

Node

New Pod

Peer
configuration

process

Existing pod

Peer
configuration

process

new remote
Pod's public key

Peer key
exchange
process

lo
ca

l i
nt

er
fa

ce

New encrypted P2P
session is established

local interface

STNd

STNd

Pod/Service events

events

Event

STNd starts an SPd, passes currently existing list
of Pods and their keys. SPd takes over the

configuration and sends back the new public key

SPd configures
interface with address
and peers, creates key

STNd distributes SPd
data to other STNd peers

New peer is configured
on interface, connection

initiated

A new Pod is created

SPd

1

2

4

SPd

5
6

3

Figure 11: Daemons exchange keys in distributed setup

Throughput in secured setup with UDP

Figure 12: iperf with secured cross-Node tunnels, UDP, 1000Mbit/s bandwidth, no peer updates

SecShift: Analysis and Conception of Traffic Security for the OpenShift Platform

Chair of Computer Networks // Dominik Pataky

Dresden, 4th July, 2019

35/24

	Appendix

