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Context

• So far: companies use in-house hardware according to their needs

• Problem: increased need for temporary computing resources

• Solution: the ’Cloud’, on demand usage of centralised resources

• Problem: security, separation of tenants in shared environments

• Solution: virtualisation and containerisation

• Problem: data is routed through foreign infrastructure

• Solution: network traffic security

• Problem: cool, but how?

• Solution: SecShift!
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The seven steps toward SecShift

1. What’s the technology stack?

2. Scope of the problem domain?

3. Identifiable threats in the topology? Additional requirements?

4. Existing work and products?

5. New design – variations?

6. Implementable in practice?

7. Does it work? Performance? Requirements fulfilled?
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But first.. OpenShift!
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Look into the OpenShift cloud platform

Linux kernel

namespaces

cgroups 

seccomp 

SELinux 

Reproducible
images, registry

Automated
networking

CLI / REST API

Cluster
orchestration

(Nodes, Master)

Services 
(proxy, load-
balancers) 

Shared platform:
User and Projects

CI/CD pipelines

Overlay  
networking

Grouping
containers: Pods

Authenticated
REST API / UI

OpenShift

Kubernetes

Docker

capabilities 

Figure 1: Overview over components in OpenShift
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Essential components of OpenShift

Let’s be a user and deploy a web and database app combination!

1. We define two container images (isolated applications)

2. OpenShift creates two pods in our Project

3. TheMaster schedules the Pods on Nodes (Linux machines).

4. Connection through service layer (load-balancing, virtual IPs)
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Essential components of OpenShift

Let’s be a user and deploy a web and database app combination!

1. We define two container images (isolated applications)

2. OpenShift creates two pods in our Project

3. TheMaster schedules the Pods on Nodes (Linux machines).

4. Connection through service layer (load-balancing, virtual IPs)

Upcoming task: secure connection between webserver and database!

OpenShift networking OpenShift security
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Problem domain model

1. Base: OpenShift topology

2. Set preconditions to limit scope

3. Definition of entities (components

and interconnections), traffic flows

and adversary models

4. Refinement of scope: focus on

traffic security

5. Threat modelling in new scope
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Threats and requirements analysis

1. STRIDE: threat modelling

Amount of threats→ ranking��⊗

2. Security requirements for traffic

security and key management

based on STRIDE, 2 ∗ 6 = 12 goals

Threat Protection goal

Spoofing Authenticity

Tampering Integrity

Repudiability Non-repudiability

Info disclosure Confidentiality

Denial of Service Availability

Elevation of privilege Authorisation

3. SQuaRE: ‘Systems and software

Quality Requirements and

Evaluation’ (ISO standard)

10 characteristics
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Now we know what must be covered.

What are existing threats?
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Firewall

Node

Uplink
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Pod Service Pod

Master
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Figure 3: OpenShift topology with weak points (weaknesses W-1 to W-9) and responsibility groups R1-R3



Threat analysis for entities

RG ID Description STRIDE

R1

W-1 The firewall, security layer dividing security zones. STRIDE⊗
W-2 The uplink, connecting data centers to the public internet. STRID-⊗
W-3 Traffic flowing through the external public access. -T-ID-�
W-4 Traffic forwarded by the Service Proxy onto the internal

Service connection.

-TRID-�

R2

W-5 Pod-to-Service (P2S) connections from Pods to virtual IPs. STRIDE⊗
W-6 Connections routed via the overlay network (ON). STRIDE⊗
W-7 Pod-to-Pod (P2P) traffic on the same Node. -T-IDE�

R3
W-8 The bidirectional Master-to-Node (M2N) connections. S--IDE�
W-9 Access to the Secrets database (SDB). ST-ID-�

Table 1: Weaknesses of components and interconnections in network related contexts. Rn references the
responsibility group. W-n reference the identifiers in fig. 3. Symbols are ranked as low (�), mid (�) and high
(⊗) criticality according to their STRIDE vulnerability.
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Short break – we now know..

X How OpenShift works

X The problem domain for SecShift

XWhich threats exist, with focus on Pod-to-Pod traffic security

X Goals beyond threat mitigation

Next: existing work and technology, followed by SecShift’s design
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What exists?

• Predecessor ‘Tencrypt: hardening OpenShift by encrypting tenant traffic’

• Research: tcpcrypt, multi-tenancy in the cloud, performance analysis of VPN

software, security examinations, Zero Trust networking

• Technology: Kubernetes extensions Istio Envoy proxies, Wormhole and

Cilium encryption layer, VPN software, secrets management

• Related: memory protection (secure enclaves), improved isolation of

applications with Kata Containers and Firecracker, layer 2 encryption with

MACsec (IEEE standard)

• SecShift: integrated encryption overlay for each tenant, no application

adaptation through transparent routing, utilising namespaces, distributed

architecture
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SecShift design overview

• Multiple aspects (key type, peering, updates, . . . ) taken into account

• Each design aspect has multiple possible approaches

• Two topology variations: hybrid and fully distributed

• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)
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• Hybrid topology: three types of components used

– SecShift Tenant Node daemon (STNd) and SecShift Pod daemon (SPd)

– OpenShift Secret, Pods and Services APIs (centralised!)

– Container engine (here: Docker)

Next: a look at the topology!
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SecShift hybrid design

Node Node

events

STNd

inter-STNd

secrets

STNd

Secrets API
Pods/

Services
watch API

Docker Docker

Pod

SPd

Pod

SPd

Pod

SPd

Pod

SPd

Pod

SPd

encrypted P2P mesh tunnels

STNd

Pod

SPd

Project

Figure 4: SecShift hybrid design topology

Distributed topology with SMd Daemons and their tasks Design variations and choices



Evaluation!
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Demo with functionality evaluation

The demo shows SecShift in action. At first the setup with Ansible is shown.

Then, the vanilla OpenShift setup is used to demonstrate the ability for hosts to

capture clear text traffic on the overlay network interface. Running SecShift and

applying the encryption overlay then illustrates the changes: all Project-internal

packets are routed transparently through tunnels in the meshed Pod-to-Pod

network. Listening on the node’s interfaces (VXLAN) visualises the encrypted

packet stream.

Reference implementation
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It works, but is it viable?

A look at the performance. . .
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Throughput for TCP in unsecured setup

Figure 5: iperf with unsecured cross-Node connections, TCP, no bandwidth limit
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Throughput in secured setup with TCP

Figure 6: iperf with secure cross-Node tunnels, TCP, no bandwidth limit, no peer updates
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It provides fair bandwidth!

Does it also meet the requirements?
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Reviewing the requirements

• Weaknesses and STRIDE

– Pod-to-Service (W-5): entirely bypassed⊗→�
– Overlay network (W-6): key pairs, peer configuration and VPN features⊗→�
– Pod-to-Pod on same Node (W-7): encryption in namespace�→�

• Security requirements: 10 of 12.

• SQuaRE characteristics: 8 of 10.
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• SQuaRE characteristics: 8 of 10.
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Conclusion

• Original goal: transparent encryption of Pod-to-Pod traffic in Project

• SecShift passed seven steps, from technology examination up to evaluation

• Result: reference implementation, evaluation and review prove design as a

feasible and valuable security improvementX

• Future work: hardening of daemons, SMd-based distributed setup,

hardware-based memory protection
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These slides and the associated thesis with further references will be published on my

website https://dpataky.eu and are licensed as CC BY-SA 4.0

That’s it.Thanks!
Questions? Feedback?

Improvements?

And don’t forget: there is no Cloud – there’s just somebody else’s computer.
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OpenShift networking with overlay

VXLAN 
overlay 
network
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Figure 7: OpenShift networking
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Security in OpenShift

• Kubernetes Namespaces (Projects)

• User management provides authentication (tokens) and authorisation (RBAC)

• API enforces TLS and offers Secrets storage

• Linux namespaces, SELinux, cgroups

• Security context constraints (SCCs) for Pods

• Extensions deliver more possibilities (Envoy proxies)
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Traffic flows and adversaries

• Three traffic flows: on the same Node (TF1), through routers in the same data

centre (TF2) and across DCs via the uplink (TF3)

• Four adversaries: passive attacker listening on routers (AM1), active attacker

modifying routing configurations (AM2), misconfigurations in log collections

(AM3) and attackers accessing Secret data (AM4)

• Identifying weaknesses in components and interconnections based on

gathered attack surfaces

Domain model
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Extended topology for true distribution

NodeNode

STNd events STNd

Pod Pod Pod Pod PodPods/
Services

watch API

inter-STNd

Docker Docker

SPdSPdSPd SPdSPd

STNd STNd

SecShift
Multiplexer

daemon

SecShift
Multiplexer

daemon

encrypted P2P mesh tunnels
Project

Figure 8: SecShift distributed design topology with SMd (and no usage of Secret or APIs)

Daemons and their tasks



Legend

Keys

symmetric
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Services
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in Service Pods
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Deployment
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application
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Figure 9: Design alternatives and choices Design topology



Daemon tasks

Daemon Tasks

STNd

Mesh with STNd peers: channels for heartbeat and exchange

Local Pods: list of local Pods and their public keys

Remote Pods: with public keys, received from peers

Topology: updates in the Project topology (from API, Pods/Services)

Secret: updates from other STNd peers

Docker: container details, events on the local Node

SPd

Coupling: channel to STNd, listening for commands

Key: creation and updates, sending public key to STNd

Network: network configuration (routes, NAT)

DNS: proxy DNS to connect Pods directly instead of Service IPs

(SMd)
Multiplexer: route packets from STNds to remote peers

Static connection: keeps one long-living channel to each Node

Table 2: List of tasks for all daemons, including the SMd

Design topology



STNd peer announcement
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Figure 10: Daemons announce themselves to their peers
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Reference implementation

• OpenShift test cluster with master and four nodes

• All nodes in WireGuard mesh network

• Daemons in Go, encryption interface with WireGuard

• Transparent routing: namespace-local network policies, routing tables,

iptables rules

• Bypassing of Service IPs by proxying DNS and modifying answers

Demo
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Figure 11: Daemons exchange keys in distributed setup



Throughput in secured setup with UDP

Figure 12: iperf with secured cross-Node tunnels, UDP, 1000Mbit/s bandwidth, no peer updates
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